Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury.

نویسندگان

  • Shuang-Shuang Dai
  • Yuan-Guo Zhou
  • Wei Li
  • Jian-Hong An
  • Ping Li
  • Nan Yang
  • Xing-Yun Chen
  • Ren-Ping Xiong
  • Ping Liu
  • Yan Zhao
  • Hai-Ying Shen
  • Pei-Fang Zhu
  • Jiang-Fan Chen
چکیده

During brain injury, extracellular adenosine and glutamate levels increase rapidly and dramatically. We hypothesized that local glutamate levels in the brain dictates the adenosine-adenosine A(2A) receptor (A(2A)R) effects on neuroinflammation and brain damage outcome. Here, we showed that, in the presence of low concentrations of glutamate, the A(2A)R agonist 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680) inhibited lipopolysaccharide (LPS)-induced nitric oxide synthase (NOS) activity of cultured microglial cells, an effect that was dependent on the protein kinase A (PKA) pathway. However, in high concentrations of glutamate, CGS21680 increased LPS-induced NOS activity in a protein kinase C (PKC)-dependent manner. Thus, increasing the local level of glutamate redirects A(2A)R signaling from the PKA to the PKC pathway, resulting in a switch in A(2A)R effects from antiinflammatory to proinflammatory. In a cortical impact model of traumatic brain injury (TBI) in mice, brain water contents, behavioral deficits, and expression of tumor necrosis factor-alpha, interleukin-1 mRNAs, and inducible NOS were attenuated by administering CGS21680 at post-TBI time when brain glutamate levels were low, or by administering the A(2A)R antagonist ZM241385 [4-(2-{[5-amino-2-(2-furyl)[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-yl]amino}ethyl)phenol] at post-TBI time when brain glutamate levels were elevated. Furthermore, pre-TBI treatment with the glutamate release inhibitor (S)-4C3HPG [(S)-4-carboxy-3-hydroxyphenylglycine] converted the debilitating effect of CGS21680 administered at post-TBI time with high glutamate level to a neuroprotective effect. This further indicates that the switch in the effect of A(2A)R activation in intact animals from antiinflammatory to proinflammatory is dependent on glutamate concentration. These findings identify a novel role for glutamate in modulation of neuroinflammation and brain injury via the adenosine-A(2A)R system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

Plasma glutamate–modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury–induced acute lung injury

The bone marrow-derived cell (BMDC)-associated inflammatory response plays a key role in the development of acute lung injury (ALI). Activation of adenosine A2A receptor (A2AR) is generally considered to be antiinflammatory, inhibiting BMDC activities to protect against ALI. However, in the present study, we found that in a mouse model of neurogenic ALI induced by severe traumatic brain injury ...

متن کامل

Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A(2A) receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A(2A) receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events ev...

متن کامل

Effects of adenosine A2a receptor agonist and antagonist on cere-bellar nuclear factor-kBexpression preceded by MDMA toxicity

  Background :Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 16  شماره 

صفحات  -

تاریخ انتشار 2010